
AD-A098 353 CON1ECTICUT UNIV STORRS LAB FOR COMPUTER SCIENCE RE-ETC F/6 9/2

WORD MEANING SELECTION IN MULTIPROCESS LANGUAGE UNDERSTANDING P-ETC(U)

FEB 81 R E CULLINGFORD, M J PAZZANI N0001-79-C-0976
UNCLASSIFIED TR-CS-80-12A NLIllllEEEEEEEI
IEEllEEElllEEE
IIIIIIIIIIIlfllfflffl



I - 113, 2
3 1112.

HI_____
jjjjjL25 -



CIOCOMPUTER SIN
TECHNICAL REPORT

C'Z Laboratory for Computer Science Research
The University of Connecticut

COMPUTER SCIENCE DIVISION

Appov for public :. ]

Electrical Engineering and Computer Science Department
U-157

The University of Connecticut
Storrs, Connecticut 06268

19 031



-- FRIO

R.E.lCullingford

14. J.,IPazzani

FiRCS-80-12A-

I~ 4g1 u -1981,

El ,-11 i



WORD MEANING SELECTION IN

MULTIPROCESS LANGUAGE UNDERSTANDING PROGRAMS

by

R. E. Cullingford
and

M. J. Pazzani

Department of Electrical Engineering and Computer Science
The University of Connecticut

Storrs, CT 06268

ABSTRACT

An understander reading or listening to saneone speak has to repeatedly
solve the problem of word-meaning ambiguity, the selection of the intended mean-
ing of a word from the set of its possible meanings. For example, the problem of
pronaminal reference can be considered as a choosing of the intended referent
from the collection of entities which have already been mentioned or which can
be inferred.

Human understanders apply rules of syntax, surface semantics, general worldknowledge, and various types of contextual knowledge to resolve word-sense or

prononinal ambiguity as they process language. We describe a mechanism, called a
cQg LJat word-jg eI o, which allows the computer to use various
knowledge sources as it "understands" text. The word-meaning selector is p~rtof
a conceptual analyzer which forms the natural-language interface for a pair of
multiprocess language processing systems. The first, called DSAM (Distributable
Script Applier M,.echanism), reads and summarizes newspaper articles making heavy
reference to situational scripts. The second, ACE (Academic Counseling Experi-
ment), is a conversational program which automates certain parts of the academic
counseling task. In each of these systems, a variety of knowledge sources, each
managed by a distinct 'expert' process, is brought to bear to enable the word-
meaning selector to form the most plausible reading of a sentence containing am-
biguous words.

The research summarized here was sponsored in part by the Advanced Research Pro-
jects Agency of the Department of Defense, and monitored by the Office of Naval
Research under Contract N00014-79-C-0976. The support of these agencies is
gratefully acknowledged. I. IN
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1. Introduction

in his noted paper describing what has comne to be knowin as the "Turing

test" [Turi5Ol, the British mathematician A. M4. Turing proposed to answer the

question "Can a machine think?" in terms of its ability to play a certain Oimi-

tation game." The game has three players: a man, a digital computer, arnd an in-

terrogator in a roan apart from the other two. The interrogator is sUPPosed to

decide, on the basis of questions put to the two players, which is the man and

j which the computer. Questions and answers are communicated back and forth over a

teleprinter. If the computer, by imitating human-like responses to the__

inter rogator 's questions, could lead the interrogator to decide wrongly in the

same percentage of cases as when the imitation game is played betweenj, say, aI man and a woman, we would conclude that it was indeed "thinking" in a truly hu-
man fashion.

The point of separating the interrogator and making him talk to the others

over a teleprinter is of course that thinking is an intellectual activity having

little to do with physical appearance or communication apparatus. M~oreov'er, the

question-answering format of the imitation game is a suitable means of focussing

on the various capabilities that are normally considered to require thinking.

For example, the interrogator could ask the computer to write a poem, play

chess, or solve an algebra word problem.

There is, however, a prior problem to be solved before the computer can

demonstrate its ability to perform intelligently in tasks such as these. To en-

tgage in a question-answering session it must be able conduct a conversation with

the interrogator. If it cannot imitate the conversational expertise I~

man, it will never succeed at the imitation game.
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The thinking cmputer, therefore, must be expert at natural-language com-

munication. This seems 'to require three distinct but strongly interdependent

processes: the ability to analyze a textual input to get at its meaning content

[cf. Wilk75, Ries75, Wile8O, Smal8O]; to zjIT j rnces about the components of

meaning that are only implicit in the input [cf. Char72, Rieg75, Scha77, Cull79,

Carb79]; and to generate m based upon the current input and

conversational history [cf. Bobr75, Gold75, meeh76, CuliBO.

This paper discusses a key problem in the computer analysis of natural

language, the selection of intended _d meanings in context. Section II

presents the problem in terms of the class of programs known as conceptual

analyzers, and describes knowledge sources needed for word-meaning selection.

In Section III, we propose a partial solution to the problem, embodied in a com-

puter algorithm called a cooverative word-Meaning elector. The algorithm pro-

vides a mechanism whereby alternative word meanings can be explicitly manipulat-

ed by various memory processes as these attempt to cooperatively home in on the

most plausible readings of sentences.

The algorithm is part of a conceptual analyzer which maps natural-language

strings into a Conceptual Dependency representation [Scha72, Scha75J of their

meaning. The analyzer, which is based upon the one described in [Birn81l, forms

the natural-language interface for a pair of multiprocess text "understanding"

systcms. The first, called a Distributable Script Applier Mechanism (DSAM

[Cull8l), reads and summarizes newspaper stories making heavy reference to si-

tuational scripts [Scha77I. The second, ACE (Academic Counseling Experiment),

is a conversational program currently being developed to automate certain parts

of the academic counseling task. An Appendix gives annotated output from the

word-meaning selector as it runs during a story-understanding task.

-2-



I1. Conceptual Analysis and word-Meaning Selection

A. Conceptual Analysis

The machine's ability to understand its input is a key cmponent in any au-

tomatic natural-language processing task. Hence, language analysis has been the

subject of considerable research attention in artificial intelligence (AI) and

computational linguistics. The model of understanding we wish to describe in

this paper is connected with the class of language-input pcograms called

* analyzers.

Analyzers of this kind are designed to map an input string directly into a

representation of the meaning of the string, using whatever morpological, syn-

tactic, semantic, contextual, etc., cues are available. Conceptual analyzers

normally operate from left to right, in one pass, a lexical or phrasal unit at a

time. Their output is stated in terms of the conceptual representation system

used by inference and memory-search processes [e.g., Wilk72, Scha72, Rume75].

Ideally, "well-formed" components of this output (called "conceptualizations"

[Scha72]) are made available to the memory functions as they are formed from the

input stream.

Conceptual analyzers are distinguished from other types in that they do not

attempt to first analyze the input syntactically, then assign a semantic reading

to the syntactic structure [see, e.g., Katz63, Chom65, WoodTO, Gins78, Marceol.

Nor do they conduct a simultaneous syntactic and semantic analysis [cf. Wino72,

Brow75]. (These latter types of analyzer are often called 'parsers".) Syntactic

features such as word order and noun-group constituency ard used by a conceptual

analyzer only to guide the conceptual mapping process.
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B. Problems in Selecting Word Meanings

The most formidable problem faced by a conceptual analyzer is that of m

eaninat selection. The phrasal/lexical units that it sees in the input are usu-

ally analyzable into more than one meaning structure. If the analyzer defers

choosing a representation, the number of possibilities grows as the product of

the number of individual readings, and the analysis process soon gets out of

hand. Therefore, the analyzer has to decide on a representation as quickly as

possible.

The best-known case of the meaning-selection problem is word.

disambicuation. A word sense is a distinct meaning of a word (found, e.g.,

under its dictionary entry), with a distinct underlying representation. consid-

er, for example, the following usages of "sense:"

(1a) bMost words have more than one sense.
(Ib) Sight is our most inportant sense.
(Ic) Sane people have no sense at all.

"Sense" is a well-behaved word in that it has only a relatively few alter-

native meanings. Other words have dozens of possible readings. For example,

"give" and "take" have been metaphorically extended to so many situations that

they are essentially meaningless in isolation. Their disambiguation requires

access to substantial amounts of context. A computer word disambiguation

scheme, therefore, will require a model of context consisting of both the mean-

ings of surrounding words and higher level expectations.

Choosing the referent of a definite noun R is another example of the

word-meaning selection problem. A definite noun phrase consists of a definite

nane, a pronoun, or a construction introduced by the definite article or certain

types of modifiers:
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(2a) John kicked the ball.
(2b) The Celtics extended their streak.
(2c) He threw John out.

The problem here is choosing the real-world referent of phrases such as "John,

"the Celtics," "the ball," "their streak," and "he." Notice that the choice of

referent often interacts with the word-sense disambiguation process. For exam-

ple, memory's ability to identify a real-world ball in John's vicinity rein-

forces the selection of "round toy" as the intended meaning of ,bali" in (2a).

Example (2b) illustrates the process of finding a referent in the current clause

unit (i.e., identifying "Celtics" with "their"), which in turn reinforces the

reading of "streak." Finally, the identification of "he" as a bartender in (2c)

gives a different meaning to the sentence than if "he" were a third baseman.

A final example of the word-meaning selection problem occurs in gllipsed

-i s. These are sentence fragments (often noun phrases) presented without

their acco.npanying propositions, most often during a conversational interaction.

For example, in:

(3a) Q. Where did you go on New Year's Eve?
A. 3 parties.

(3b) 0. Who's eligible for Federal matching funds in the '80
election?

A. 3 parties.

reference to the conceptual form of the immediately preceding question is needed

to select the intended sense of "parties."
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C. Knowledge Sources for Word-Meaning Selection

Clearly, to solve the word-meaning selection problem the computer will have

to be given various sources of knowledge about natural-language phenomena and

means for applying the knowledge as appropriate. This section contains a brief

discussion of sane kinds of knowledge that seem to be needed, as an introduction

to a Conceptual Dependency analyzer capable of certain kinds of word-meaning

selection.

The simplest, and probably best understood, knowledge source for this task

is rules of syntax. The intended reading of "visiting" in the following example

cannot be determined without examining context:

(4a) Visiting relatives can be a nuisance.

If we change the syntactic form of (4a) slightly, however, the meaning is clear:

(4b) Visiting relatives is a nuisance.
(4c) Visiting relatives are a nuisance.

In (4b), the singular form of the copula selects the "I-visit-relatives" meaning

of "visiting," while the plural form in (4c) selects the "relatives-visit-me"

meaning. Syntactic phenanena of this type have been extensively studied [e.g.,

Hobb76, Hobb79, Nash78].

blore powerful knowledge sources use "semantic," "contextual" and "pragmat-

ic" features. Surface semantics exploits the constraints which certain words

place on other words in a sentence. The term "surface" is used because the con-

ceptual class of a word, rather than deeper contextual information, sets up ex-

pectations about, or selectional restrictions [Katz53I on, the senses of sur-

rounding words.

For example, the meaning structures associated with certain verbs (e.g.,
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eat, think,, sleep) require an animate actor.* In the Conceptual Dependency

representational formalismn, one sense of the verb "eat" is based upon the "prlim-

itive" action INGEST, whose conceptual actor must be an animal or a person.

This actor is to be found in the syntactic subject spot in a declarative sen-

tence. Therefore, the expectation for an animate actor constrains the meaning of

the head noun in a noun group preceding the verb. Thus, a sentence such as:

(5) Colorless grLen ideas sleep furiously.

has no intel.ligible meaning structure even though it is syntactically accept-

able. Cne reason for this is that there is no sense of "ideas.' in (5) which

meets the selectional restrictions of "sleep."

if a word has multiple senses and one sense belongs to an expected class,

then the sense which belongs to the expected class should be the intended sense.

Example 6 illustrates how surface semantics can be used in word sense selection:

(6) John kicked the green ball.

The word "ball" has at least two meanings, a spherical toy or a formal dance.

The spherical toy sense is appropriate here because of the selectional restric-

tions imposed by "kick." Because the conceptual object of the meaning structure

underlying "kick" must be a physical object (Note 1), the intended sense is

clear. On~ce the "toy" sense of "ball" has been selected in (5), the noun group

"green ball" has only one distinct meaning, even though there are three senses

of "green" (a "color," "unripe," and "inexperienced"). As a similar example,

there are two possible meanings of the phrase "the colorful ball," but only one

reading in each of the following:.

John kicked the colorful ball.
John attended the colorful ball.
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In many cases, however, surface semantics alone does not give sufficient

information to perform word-meaning selection. General world kn lede, our

shared commonsense understanding of the features and functions of objects and

events, is also available to assist the understander. Use of world knowledge

requires access to deeper memory functions than does surface semantics, which

sets up constraints based solely on the meaning structures associated with word

senses. World knowledge can be utilized in disambiguation to eliminate readings

of sentences which, while not logically ruled out, are nevertheless high.Ly un-

likely in commonsense terms:

(7a) John has hair on his chest.

(7b) John has a padlock on his chest.

In (7a), it is possible that John has a hairy piece of luggage. Similarly, one

can imagine that John is locked up in a straitjacket in (7b). Nevertheless, ap-

plication of ordinary world knowledge yields the most plausible reading in both

cases. Selectional restrictions do not help in these examples because both

meanings of "chest" are possible in each sentence. To perform the necessary

disambiguation, a computer program must consult a memory containing descriptions

of entities such as body parts and luggage. This would point out that luggage is

a kind of container and that locks are often used to prevent undesired access to

a container. Alternatively, it would assert that body parts of certain animate

objects can have hair.

In the sense in which we have introduced it here, world knowledge encon-

passes general sources of information not tied to any specific experience, which

an understander can use to constrain the possible meanings of a word. Detailed

knowledge about special situations constitutes important further sources of data

concerning context. In the Conceptual Dependency paradigm, knowledge about

stereotypical situations such as eating at restaurants, riding subways, seeing
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plays, etc., is organized for use by the computer into knowledge structures

called situaign scripts IScha77]. Higher level knowledge structures, called'

goals and Dlans, encode the objectives of human actors and methods f r achieving

these objectives. [Scha77, Wile78]. The complex social, psychological and phy-

sical states from which goals in turn arise are called themes [Scha77J.

Once a scriptal, planning or thematic context is established, there are

many expectations concerning events that are likely to occur which can aid the

word-meaning selection process. Consider, for example,

(8) As we left the restaurant, we left a tip.

The first clause in Example 8 establishes a context (the restaurant script).

Word senses are selected with respect to that context. The first occurrence of

"left" can be disambiguated by surface semantics. The only possible reading is a

physical change of location of its actor (in Conceptual Dependency terms, a

PTRANS). The second occurrence of "left" in (8) would be ambiguous if it were

not for context. Two possible readings of "left a tip" are "give money to the

server," or "tell someone a useful piece of information." The most likely mean-

ing in this examaple, "to give money to the server," is selected because this

event is expected to occur in the restaurant script at the point introduced by

the clause "as we left the restaurant."

As a second example of meaning selection in context, -.insider:

(9) John insulted the bartender at "21."
He threw him out.

Here we have an unexpected event occurring in a restaurant. "Insult" is a so-

cial act implying the possiblity of the insulted person's forming the gol of

getting revenge. This establishes a planning context within which to interpret
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this person's actions [Wile78]. The actions which are most likely to occur are

conditioned by a thematic relationship mentioned in Story 9, viz., that the in-

sulted person has the role of bartender in the restaurant script.

Suppose that "throw out" can mean "eject someone," "force someone out in

baseball," or "discard." Then, if "he" and "him" can be either "John" or "the

bartender," there are six possible veaning structures which could be associated

with the second sentence of (9). The "discard" possibilities can be ruled out

on surface semantic grounds. only one of the remaining four viz., "bartender

eject John from restaurant," conforms with an expectation set up as a result of

the intricate interplay among scriptal, planning and thematic inferencing.

D. Computer "Understanding" Systems

No existing computer language-processing system is capable of handling com-

plex examples such as (9). Two systems have been developed at The University of

Connecticut, however, which can apply various kinds of knowledge to perform

several important types of word-meaning selection. These systems use a Concep-

tual Dependency analyzer (to be described more fully in Section III) as their

input interface, and assist the analyzer in selecting word meanings as it runs.

One program is a story understander, DSAM (Distributable Script Applier

mechanism), which reads and sunmarizes newspaper stories about plane crashes.

DSAM, a flexible version of an earlier program (described in [Cul178]) developed

at Yale University, was built to investigate in detail the inferencing processes

needed for "careful" reading, as opposed to skimming [DeJo79]. Here is a typi-

cal example of input and output from DSAM:

Story 1:
An airliner flying from Denver to Salt Lake City struck
a mountain peak today as it was leaving Stapleton Airport,
authorities reported. All 33 persons aboard were killed.

I
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Summary:

33 persons died in a plane crash near Denver, Colorado.

Several kinds of cammonsense knowledge are needed for a reasonably deep

comprehension of Story 1. Wt need to know about causal relationships among

stereotyped events in the world. For example, it is perfectly possible for a

plane to crash while taking off, mountains are suitable objects for planes to

run into, and the death of passengers and crew is likely when this happens. In-

formation of this type is contained in a situational script [Scha77] describing

the details of the context surrounding plane crashes. We also need to know

about objects, persons and places as these are typically described in newspaper

stories. For example, the "it" that was leaving the airport is the plane that

crashed. Note that solving this prononinal reference problem is crucial in de-

ciding on the appropriate sense of the word "leave."

DSAN is "distributable" because it is configured as a system of cooperating

processes, each an "expert" at tasks such as applying scripts, answering ques-

tions about persons, etc. Thus, the story understander could be implemented on a

distributed-processing system, although it is running on a single computer at

present. New sources of knowledge can be added to the system (using an integra-

tion technique called hierarchical task management [Cull81]) to make it incre-

mentally more powerful. For example, DSA14 was given a "flare" mechanism to allow

it to focus on "interesting" things in plane crash stories:t

Story 2:
An airliner carrying Marshal Lin Biao and his aides struck
a mountain peak today as it was leaving Shanghai Airport,
authorities reported. All 33 persons aboard were killed.

Sunmary:

Marshall Lin Biao died in a plane crash near Shanghai, China.

The effect of the flare mechanism can be seen in the summary of Story 2,

which mentions the death of the "very important person," but not the others on
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the plane.

The second program is an interviewing system, called ACE (Academic Counsel-

ing Experiment), which is currently being developed to simulate an academic

counselor advising students on course selection, scheduling, etc. The main

knowledge source ACE contains is a model of the curriculum followed by engineer-

ing students who intend to be computer science majors at The University of Con-

necticut. The model gives a script-like description of course sequences, co-

requisites, and distribution requirements (but not course content), as well as

the typical or expected student schedule.

One of ACE's tasks is to conduct a pre-registration, in which a student

signs up for courses in the semester preceding when they are actually taken.

The follwirg is actual input/output from a question-answering session between

ACE and a (simulated) first-smester engineering student:

ACE : What courses are you taking at UConn this semester ?
STUDENT : computer science, chemistry 130 and history 101.

ACE : Have you completed Chem 129 ?
STUDEMT : Yes, I got credit for Chem 129 by examination.

ACE : What is the number of the computer science course ?
STUDET : 110.

ACE : What other courses besides CS 110, Hist 101 and Chem
130 are you taking ?

STUDENT : I'm also taking english and a group 3 course.

ACE : Have you completed Math 133 ?
STUDENT : I passed it in high school.

ACE : What is the number of the English course ?
STUDENT : I am taking English 105.

ACE : What is the name of the group 3 course ?
STUDENT : Art 101.

ACE : You will have to take Math 134 next semester
ACE : You may take CS 111, CS 207, a group 2 course and a

group 3 course .
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The basic idea here is to set up a course schedule for the student which

makes sense in terms of the student's current standing. To do this, ACE needs

to know what the student is taking now. The first question in the dialog above

is designed to elicit this information. Since engineering students typically

take four or five courses a semester, the response to this question is incom-

plete. ACE's understanding of the ellipsed answer depends upon the analysis of

ambiguous terms such as "computer science" in the context of the question which

wag asked. Cn this basis, "computer science" is taken as referring to a course

rather than the field. Even so, the response as given indicates several prob-

lems.

First, there are several ways to complete the undergraduate chemistry re-

quirement. One way is to take the sequence Chem 129/Chem 130. It is highly

unusual for a first-semester freshan to be taking Chemistry 130 since it has a

prerequisite. In some cases, a student may be able to get advanced credit by

passing an examination based on the prerequisite's subject matter. ACE is aware

of this possibility as it asks the second question.

Having solved the problems caused by the answer to the first question, ACE

attempts to find out what other courses the student is taking. It notices that

the highly expected mathematics course sequence has not been mentioned, and im-

mediately tries to find out why. The curriculum specifies that Math 133 is the

expected course at this point, and this determines the form of the question. Be-

cause the question explicitly mentions Math 133, the referent of "it" in the

response "I passed it in high school" can be supplied to the analyzer. This in

turn disambiguates "passed."

Having determined the student's current course load to its satisfaction,

ACE then consults the curriculum again to find out which courses are mandatory
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at this point, and which are optional. Note, however, that the responses it gen-

erates at the end of the dialog are critically dependent on its understanding of

what was said before.
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III. An Algorithm for Word-meaning Selection

Having sketched sate imPortant analysis problems posed for systems such as

IAN and ACE, we now turn to a more detailed discussion of bow these problems

are solved by the conceptual analyzer they use.

A. Conceptual Dependency Analysis

Language analysis in the Conceptual Dependency (CD) paradigm, motivated by

the way that people seen to approach the task, has attempted to use predictions

or e2= g n about what will be heard as the driving force behind the under-

standing process (Note 2). Syntactic, surface semantic, scriptal, and planning

contexts are all rich sources of predictions. Therefore, the main line of

development in CD analyzers has been the attempt to incorporate more and more

context into the analysis process.

Word definitions describing the meaning structure(s) built by a word and

suggestions for using this structure are typically kept off-line in a diction-

ary, and are not called into active memory until the word is actually seen in

the input stre-n. F pectations associated with a word definition are encoded in

a special type of production (or test-action pair [Newe72, McDe78]) called a

regues [Ries75].

Requests are activated when the associated word definition is loaded. The

activation process places the requests in a short term memory of requests to be

considered. Request consideration repeatedly selects a request and evaluates

its test pert. If the test is true, the request is said to have "fired," and its

action part is executed.

Requests can check semantic, lexical, or contextual features of the run-

time environment, and create or connect Conceptual Dependency structures.

-15-



moreover, they can cause other requests to be loaded or deleted. Associated

with the meaning structure built by a word (sense) are a set of roles and a set

of expectations embodied in requests indicating how the roles are to be filled.

Consider, for example, the sense of the verb "to take" which means "to exe-

cute the academic-course script" from the point of view of the student. (To

"give a course" or to "teach a course" is to execute the same script from the

point of view of the teacher.) In a simple English format, the requests associ-

ated with this sense of "take" would be:

RBQUESTl:
TEST:
Is the "object" of take a course?

ACTIONS:
Create the concept for an execution of the course

script.
Fill the conceptual object slot of this concept

with the course that was found.
Activate REQUEST2

REQUEST2:
TEST:
Is the "subject" of take a person?

ACTIONS:
Fill the conceptual actor of the course script

with the person that was found.

These requests contain two different types of information. "Positional" specifi-

cations predict where in the sentence the conceptual actor and object of the

take-course script will be found. For example, the "object" spot in REQUESTI is

the syntactic object of the clause containing "take" if the sentence has the ac-

tive voice, the syntactic subject if it is passive. "Semantic" specifications

constrain the entities that will be used to fill the conceptual actor and object

role in the take-course concept.

Existing CD analyzers such as ELI (English Language Interpreter: [Ries78])

and Ch (Conceptual Analyzer: [Birn79]) use the test part of a request to imple-
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ment a form of word-sense disambiguation based bn surface semantics. For cer-

tain words, a group of tests checking lexical, syntactic, or semantic features

can be used to determine which sense is intended. In such a case, the tests are

said to be orthoqonal, i.e., the tests check mutually exclusive cases and cover

all possibilities in such a way that exactly one request is fired. The action of

the request which has fired will create the meaning representation for the in-

tended word sense. In this manner, one word sense is selected and the others are

suppressed.

So, for example, we could add a second word sense to the definition of

"take" corresponding to a sentence such as "John took an aspirin" in the follow-

ing way:

REQUEST3:
TEST:
Is the "object" of take a drug?

ACTIONS:
Suppress the other requests of "take"
Create the concept for an IGEST action
Fill the conceptual object slot of this concept

with the drug that was found.
Activate REUEST4 (to find an actor, as above)

This method of selecting word senses by using orthogonal requests works well for

many verbs. The intended word sense is determined by the class of actor or ob-

ject associated with the verb. The method is also useful in disambiguating scme

adjectives. For example, two reanings of "rich" can be discerned in "a rich

man" and "a rich cake." Here, the conceptual type of the modified noun (person

vs. ingestible object) is enough information to select the proper meaning of

"rich." Words which can be disambigjated by orthogonal requests have a cormon

feature. Their meaning is embodied in a cas frame of conceptual cases and fill-

ers, with a request looking for a conceptual entity to fill each case. The type

of conceptual entity found can determine which sense is intended. Nouns which

build Picture Producers [Scha72], on the other hand, do not have this feature
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since typically they build case frames with all the cases already filled in.

(Picture Producers are concepts corresponding to entities such as persons,

places and objects which tend to produce a mental image in the mind of the

understander.) For example, in the sentence:

(10) John shot two bucks

"John" builds a Picture Producer for a male person named John. This concept is

"complete" in the sense that it can be understood in isolation, as, for example,

"shot" camnnot. Similarly, although the phrase is ambiguous in (10), "two bucks"

builds well-formed structures for either "amount of money" or "male deer." It

would be difficult, if not impossible, to define a set of orthogonal tests to

select the intend.e meaning of ambiguous ncminals such as "buck." The problem

with this approach, is tbiat each word is responsible for disambiquatin itself.

To select the ir- -r.ed sense of a word which can create several different Pic-

ture Producers, .execta&ions about the intended conceptual class must be used.
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B. Related Work in Word-Meaning selection

Riesbeck' s ELI and Small's Word Expert Parser (WEP: [Smal8O]) are two con-

ceptual analyzers which implement proposed solutions to the problems caused by

words with multiple senses. In ELI, expectations are used to choose among word

senses. Requests associated with a word are activated only if their actions

build a Conceptual Dependency structure which is expected by an already existing

request. "Expected" here means that the test part of the existing request would

become true if the meaning structure which the new request builds were added.

(The process of extracting the meaning representation from the action part of a

request is called rehearsal.) Note that this is a t~L-dw approach. ELI matches

meaning structures created (through rehearsal) by new input to its expectations.

There are several problems with this approach, all caused by the requirement for

a pre-existing expectation. Since conceptual entities must have been predicted

before they are accepted into the system, and since initially there are no ex-

pectations, there must be a standard set of initiating requests at the beginning

of each new sentence. However in sentences such as:

The pilot and co-pilot died, authorities announced,

the second clause is not expected and the initiating requests are no longer ac-

tive. ELI can properly handle the disambiguation of "ball" in:

(10a) John kicked the ball.

(l0b) John attended the ball.

because "kick" activates a request containing the proper prediction. However,

it cannot handle the passive forms of these sentences:

(Ila) The ball was kicked by John.
(bib) The ball was attended by John.

because the expectation needed to disambiguate "ball" comes after the word. ELI
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does not have the ability to delay deciding among requests to activate.

The Word Expert Parser is a complex and interesting conceptual analyzer ca-

pable of performing in a bottom-up fashion several of the types of word-meaning

selection considered here. In WEP, each word comprising a bundle of word-senses

is assigned an individual "word expert." A word expert is represented as a

c ine which cooperates with neighboring words to select its intended sense

and eventually to build a meaning structure for the entire sentence. (The mean-

ing representation system is a variant of Rieger's CUmmonsense Algorithm nota-

tion [Rieg76].) A word expert's basic mechanism for selecting one of its senses

is a discrimination net in which n-way discriminations (called multiple-choice

tests) can be made on the basis of lexical and semantic properties of neighbor-

ing words.

The sources of knowledge which the Word Expert Parser uses are surface se-

mantics and, to a lesser degree, general world knowledge coded into an individu-

al word expert. Ho'ever, it apparently has no way of using the higher level

forms of predictions provided, for example, by scripts, plans, and discourse

context. So, for example, it could not disambiguate "took" in:

(12a) David was arrested because he took
a bottle of aspirin.

(12b) David died because he took a bottle
of aspirin.

In other cases, the information requested by the multiple-choice tests of

the discrimination net will not be present. For example, the semantic category

of the object of "take" is needed to discern between "take a course" and "take

medicine." In Example (13), however, this is not immediately available:

(13) David took it.
Question from the word expert of "take:"

What did David take?
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A method for performing pronominal reference has not been implemented in

WEP. In fact, such an algorithm could not use th6 standard word expert discrimi-

nation net mechanism because this requires the possible senses (or antecedents

in the case of pronminal reference) to be known when the word expert is coded.

C. A Representation for Multiple Word I-leanings

Existing conceptual analyzers, then, fail to handle many important cases of

word meaning selection. There are two main reasons for this: (1) the handling of

expectations is constrained too much, as in ELI, by the top-down nature of the

control structure; or (2) as in wEP there is no way to make use of high-level

expectations during disambiguation. Both approaches suffer from the fact that

the alternative senses of a word cannot be explicitly seen by the disambiguating

processes, being hidden in ELI, for example, inside the action parts of requests

to be rehearsed.

The approach taken in this work builds upon the design of Birnbaum and

Selfridge's LA, which i-plements an essentially bottxn-up approach to conceptual

analysis. CA allows word definitions to add concepts and expectations to the

analyzer's short-tenm memory (called the "concept list," or C-LIST) essentially

at will. Thus, it avoids ELI's excessively top-down nature. On the other hand,

expectations embodied in requests are handled uniformly no matter what tbei

source. Thus, the opportunity exists to have memory processes examine and modi-

fy the current state of the analysis process.

Iwo things are needed to make this work. Qne, we must have representation-

al system for words with multiple meanings which makes the alternatives visible.

Secondly, a uniform repertoire of procedures to manipulate the alternatives must

be made available to the processes capable of making a selection.
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Our approach is implemented in a conceptual analyzer called APE (A Parsing

Experiment), which extends CA to handle these more general kinds of meaning

selection processes. We use the following simple declarative representation for

a word with several word senses:

(VEL V1 "sense 1"

V2 "sense 2"

Vn*"sense n")

where VEL (Latin "or") indicates a mutually exclusive set of possible meanings.

The dictionary definition of a word with multiple meanings always contains

a request to add all its senses (i.e., add a VEL) to the analyzer's short-term

memory, the C-LIST. At the same time, a pool of requests may be activated to

aid in the dis&nbiguation of the VEL.

Selection of the intended component of the VEL follows these procedures:

1. The request creating the VEL may activate another request to examine
the C-LIST for a concept with a semantic feature, to check the input
sentence for a lexical feature, or to query a script or plan applier or
other rraory module for a contextual feature. A request of this type
could assert which meaning is intended or eliminate senses which are
not intended.

2. A pre-existing request may be looking for one of the possible meanings
of the word creating the present VEL. Typically, expectations of this
kind corme from surface semantics (e.g "attend" expecting an event as
its object).

3. Most importantly, a VEL may be disambiguated by expectations explicitly
set up because some sort of context has been established:

a. Knowledge structures such as scripts or plans;
b. Discourse contexts such as permeate narratives (which allow pro-
noun and other definite nominal references to be established) or
question-answering dialogs (which fill out ellipsed answers using
expectations about the answier to a question).

These expectations are also encoded as requests but the source of the
request comes from the understanding system itself.

The first and second of these techniques implement word meaning selection

based on surface semantics, since expectations are set up by the requests asso-
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ciated with input words. The last method relies on the integration of the

analyzer with various kinds of memory modules so that context can assist the

parser.

Note that the advantages of integration are two-way. Recourse to context

will be often be decisive in eliminating ambiguity, thus reducing drastically

the number of abiguous readings to be considered by the analyzer. The analyzer

in turn can inform the contextual knowledge sources that their predictions have

been substantiated. As a result, the absorption of the concepts created by the

analyzer into the larger knowledge structures encoding the computer's under-

standing of a domain are dramatically speeded up. (The analysis procedure dis-

cussed in [DeJo79] illustrates precisely this point.)
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D. Use of Surface Semantics in Disambiguation: An Example

VEL Representation and Operations

The following simple example illustrates the use of the VEL, and the opera-

tions which create VELs or select a conceptual entity frm VELs. The word defin-

itions to follow are essentially encoded in the request format definition de-

fined by the CA conceptual analyzer. See [Birn79] for a detailed description of

its operation. Here we stress parts of CA of relevance to the VEL mechanism.

The sentence to be be analyzed is "The ball was kicked." The words "kick"

and "ball" are of interest here. The LISP-format dictionary definition of "kick"

as it is used by APE, the natural-language front end for DSAM and ACE, is given

below ("" indicates a cot-went):

{def kick
(requests
(req

[test t] -add propel concept
[actions
<:= strO (add-con '<*act* type (*propel*)

actor (nil)
object (nil)
inst (*act* type (*move*)

actor (nil)
object (*pp* type(#bod-prt)

stype (*foot*)) > )>

-activate requests to find the actor and object
(activate
<req -find person who is the actor
[test (:= strl (if-avail(cc)(and(in-act-spot cc strO)

(feature cc #person))]

[actions (fill-gap '(actor) strO strl)
(fill-gap '(inst actor) strO strl)]>

<req -find the object of the propel
[test (:= str2 (if-avail(crc)(and(in-obj-spot crc strO)

(feature crc *pp*))]
[actions (fill-gap '(object) strO str2) J>

)]
)
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The definition of "kick" contains a request whose test is always true and

whose action contains the function add-Aon which builds a CD structure for a

PROPEL (i.e., the application of a physical force) and adds it- to the C-LIST.

The act which is INSrrumental to the PROPEL is a MOVE (i.e. movement of a body

part.) The object which is IMVEd is a foot. The name of the concept which add-

con creates is substituted throughout the body of the request by the un-t

binding operator, -=

At activation time, "kick" also creates expectations that an actor and ob-

ject with specific conceptual properties will be found. The function activate

creates a pool of requests which encode these expectations. Here, two requests

are spawned. The test of the first request contains the function if-avail which

applies a predicate to the concepts on the C-LIST. In this case, the predicate

is looking for an "available" concept (i.e., one which has not been absorbed by

a larger concept) which is a person, and is in the syntactic "actor spot" of the

sentence with respect to the PROPEL concept created by "kick." In this example,

the sentence is passive, so if-avail attempts to apply the semantic predicates

to the concept built by a noun phrase following the preposition "by." Thus, APE

can distinguish between cons*.uctions such as "the ball was kicked by John,"

"the ball was kicked by Tuesday," and "the ball was kicked by the bridge."

For purposes of meaning selection, if-avail can apply a semantic/positional

predicate to all the components of a VEL. The predicate returns true if at

least one of the components of a VEL satisfies its requirements. Those com-

ponents which fail to make the predicate true are removed from the VEL by a pro-

cess called VE compression. If only one component remains, the VEL is replaced

by that one, the intended sense of the word. Thus, a request which expects a

concept belonging to a certain semantic category can find it and assert that the
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VEL has been disambiguated.

The second request activated under "kick" searches for a Picture Producer

in the syntactic "object" (here, the subject) spot with respect to "kick." If

this request fires, it fills the conceptual object spot of the PiOPEL concept.

Now we need the definition of "ball:"

Idef ball
(requests
(req -create a formal dance or a toy.
[test tI
[actions <:= strO (add-con '(*vel* vl (nil) v2 (nil))>

(velrole strO 'vl '(*pp* type (#toy)))
(velrole strO 'v2 '(*event* type ($formal-dance))

)

This definition adds a VEL with two senses of "ball." The function velrole

is used to create the alternate senses: one a Picture Producer of type "toy;"

the other a "formal-dance" script. Note that the definition of "ball" contains

no disambiguating requests. It relies on other concepts to select its intended

sense.

In the analysis of the sentence "the ball was kicked," the intended sense

of "ball" is found by APE because "kick" is expecting its conceptual object to

be a Picture Producer.
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E. Selecting the meaning of Definite Noun Phrases

In Section II, we identified the need to find the referent of definite noun

phrases as an important part of the word meaning selection process. One example

of this problem is prononinal reference. A pronoun normally refers to a concep-

tual entity mentioned or inferrable elsewhere in a story or dialog. Proncminal

ambiguity arises in examples in which there are several possible referents meet-

ing (in English) the restrictions of gender and number for a pronoun. Selecting

the referent of a pronoun is not a simple task. It may require surface seman-

ticS, world knowledge, or contextual knowledge. Consider, for example, the

usages of "he" and "him" in the following sentences:

(13a) Bill hates John, so he hit him.

(13b) Bill hates John, because he hit him.

In Ex-mple (13a), Bill is most likely the actor of the PROPEL. Syntactic

cues don't help much here. A hir,'an understander knows that hitting is an act

that can be explained by a desire to cause injury, which can be explained by a

state of hatred. Because Bill hates John, it follows that Bill may wish to hit

John. In (13b), on the other hand, the probable actor of the PROPEL is John.

Hitting smeone often leads to their hating you. Once again, an extremely com-

plicated inference process involving the goals and plans of the actors in Exam-

ple (13) is required before the intended referent can be located.

Suppose we represent (through a memory call) the set of possible referents

for a pronoun in a VEL format. Then pronaninal ambiguity can be resolved in a

manner analagous to using VELs in word sense disambiguation. (Any definite noun

phrase whose referents can be proposed at the time the phrase is encountered can

be handled in the same fashion. See [Cull8l] for details.)

The VEL is used in pronominal reference to help select the intended re-
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ferent by proviing an explicit representation for the possible referents. How-

ever, in pronominal reference, unlike word sense selection, the components of

the VEL are not fixed in a dictionary definition. From the VEL representation,

the operations used by surface semantics, world knowledge and contextual

knowledge can select the intended sense.

For example, consider the following stories.

Story 3:
John knew aspirin upset his stonach.
He took it anyway.

Story 4:
John knew Computer Science 265 was difficult.
He took it anyway.

In Story 3, the possible referents of "it" are "aspirin" and "stomach.* One

sense of "take" expects its conceptual object to be a drug. Since "aspirin"

meets this selectional restriction, one could safely assume it is the referent.

This in turn disambiguates "take."

Similarly, in Story 4, Computer Science 265 can be selected as the proper

referent of "it" and "take" is intended to mean execute the "course" script.

Computer output fro the story understander, DSAM, which illustrates the

use of VELs in proncninal reference is given below. The mechanism of word mean-

ing selection involves an interaction between APE and PP-Memory (the module of

DSA14 which knows something about the properties of Picture Producers).

The APE dictionary definition of the word "it" shows how pronaninal refer-

ence is done in DSAtI:

(def it
(requests
<req

[test t]
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[actions
<:- strO (add-con '(*pp* type (nil)

ref (pron)
gender (*neut*)) >

(find-ref strO)]>

The function find-ref is used by APE to request the set of possible re-

ferents for "it." Find-ref, therefore, is effectively a distributed function

call, in which the module responsible for keeping track of Picture Producers,

PP-Memory, supplies the analyzer with all the entities meeting the requirements

of gender and number in the current context.

Below we present output from the story understander, DSAM, as it processes

Story 3. The output has been edited slightly for readability, and various cm-

ments (indicated by ";") have been inserted to explain what's going on. The

pronaninal reference interchange described above, and all the interactions among

the expert processes comprising DSAM and ACE, is controlled by the integration

"expert," the hierarchical task manager [Cull8l]. This module is referred to as

the Gateway (Ge) in the computer run to follow. DSA14's dictionary and morphology

specialist, which supplies request clusters to APE, is called TrIN.

DSA14 ... vl.O

ITIN: file take7 text:
((david knew aspirin upset his stomach pr) (he took it pr ))

;The story to be processed

;we pick up the computer run after the first
;sentence has been analyzed. Here is its CD
; representation:

APE: sentence concept: apc5
* (xpn apc5): (*act* mode (*tf*)

type (*mtrans*)
actor (*pp* type (#person)

persname (david)
gender (*masc*))

from (*itm* part (*pp* type (#person)
persname (david)
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oic(cp J gender (*masc*)))
mobject (*corel* type (*cause*)

precon(*act* type (nil)

actor (*pp*.type (#ingobj)
ingtype (*ued*))

postcon
(*state* var (*health* part

(*pp* part (*pp* pptok pphumO
type (#person)
persname (david)
gender (*masc*))type (#bod-prt)

stype (*stanach*))
toward (*-5)))))

;The meaning structure for the sentence is based upon
;an TRANS, i.e., a mental transfer of information,
;from David's long-term memory (ltm)
;The information transferred is that some unknown act
;involving aspirin has caused the physical state of David's
;stomach to decline. Note that PP-memory and APE have
;disambiguated "his," which at this point can only be
;"David." pphumo is the memory pointer to "David,"
;"David's stanach" is pptokl, and "aspirin" is pptokO.

;DSAM starts on the second sentence
sent = (Ihe Iperf$ Itake lit Ipr )

the current word is lhe
* inr9 being considered

;At this point, the referents for "he" must be requested.
;Find-ref is called to get the data fran PP-Memory (PPMEM).

APE seeking referent apc3l
ape : requesting

(find-ref apc3l)

;a complicated gateway interaction has been onitted here
PPEM: apc31 could be (pphumO)

;once again, david (pphmO) is only referent

inr9 has fired
:c-list= (apc35)
available= (apc35)

;apc35 is "david"

(xpn apc35): (*pp* pptok pphumO
type (#person)
persname (david)
gender (*masc*))

the current word is Itake
inrll being considered
inrll has fired
:c-list= (apc35 apc36 apc37 apc40 apc42)
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available= (apc37 apc35)
;apc37 is a VEL with two senses of take

aprl7 being considered
apr17 has fired
:c-list= (apc35 apc36 apc37 apc4O apc42)
available= (apc37)

;take locates "David" (apc35) as its actor.
;Either sense of take requires a person for
;the conceptual actor
;Here is the still-aTbiguous concept:

• (xpn apc37): (*vel* mode (*tf*)
vi (*act* actor (*pp* pptok pphumO

type (#person)
persname (david)
gender (*masc*))

course (nil)
type ($course))

v2 (*act* actor (*pp* pptok pphumO
type (fperson)
persname (david)
gender (*masc*))

object (nil)
type (*ingest*)))

the current word is lit
inrl2 being considered

;ape needs a referent for "it"
APE seeking referent apc45
ape : requesting

(find-ref apc45)

PPME: apc45 could be (pptokl pptokO)
;There are two possible "it's"
; pptokO - aspirin
; pptokl - david's stanach

inrl2 has fired
:c-list= (apc35 apc36 apc37 apc40 apc42 apc44 apc5l apc49 apc50)
available= (apc5l apC37)

;apc5 is the VEL containing "david's stomach" and "aspirin"

• (xpn apc5l): (*vel* vO (*pp* pptok pptokO
type (#ingobj)
ingtype (*med*))

vO (*pp* pptok pptokl
type (#bod-prt)
stype (*stomach*)
part (*pp* pptok pphum.0

type (#person)
persname (david)
gender (*masc*))>

;the VEL of possible referents of "it"

apr19 being considered
;If we find a drug, assert IOGEST
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;and fill object slot

VEL assert old: apc5l new: apc5O
According to PPW.M, "it" can indeed be a drug,

;so conpress the VEL for "it" to "drug"

VEL assert old: apc37 new: apc42
;Now we can disambiguate "take"

o;Compress its VEL to "ingest medicine"

aprl9 has fired
:c-list= (apc35 apc36 apc37 apc4O apc42 apc44 apc5l apc49 apc5O apc52)
available= (apc42)

APE: sentence concept: apc42

;The final representation of the sentence:
• (xpn apc42): (*act* object (*pp* pptok pptokO

type (#ingobj)
ingtype (*reed*))

mode (*tf*)
actor (*pp* pptok pphumO

type (#person)
persname (david)
gender (*masc*))

type (*ingest*))

In this example, "it" has two possible antecedents. Selectional restric-

tions inosed by one sense of "take" choose the intended referent. This also

disambiguates "take."
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F. Word-Meaning Selection in Scriptal Context

Throughout this paper, we have argued that understanding must, be done in

context. Contextual information is gleaned from "knowledge structures* which

encode people's repeated experiences in familiar (i.e., scriptal) and not-so-

familiar (i.e., planning) situations. Simulating such knowledge structures for

the machine gives it a source of "experience" by which it can evaluate new in-

put.

Situational scripts are the model of context used by DSAM. A script con-

sists of a set of roles, the standard participants in the script; a set of pos-

sible entry conditions which describe the state of the roles at the beginning of

the episode; a set of scenes, containing the events which typically occur in a

script; the causal and temporal relationships among the events; and a set of

possible resulting states of the script. All these items are expressed in

language-independent Conceptual Dependency patterns. The expert process called

the script applier attempts to locate the conceptualizations produced by the

analyzer in its collection of scripts. If it succeeds in this, it can build an

inference chain of events, both those which were explicitly mentioned and those

which can reasonably assued to have occurred, as well. This "trace" through a

script is the story representation which the machine consults to demonstrate its

"understanding," e.g., by summarization or question-answering.

The understanding process depends critically on the system's ability to select

word meanings. In DSAM, the event patterns of the script have been augmented so

that each event can have a named request associated with it. Such requests en-

able the script applier to inform APE of its expectations in a format APE can

use. This gives APE the common sense knowledge we share of the domain being

currently considered.
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An expectation-based system such as DSAM can have the problem of cambina-

torial explosion unless there is sane method of controlling the number of expec-

tations. DSAM contains a windowinQ mechanism (described in [Cull7aj), which

keeps track of what has been seen and what is immediately expected, as the story

follows a path through a script. This mechanism is aided by the communication

channel between the analyzer and the script applier. In addition to sending con-

cepts as soon as they are completed, APE informs the script applier of the rela-

tions between concepts specified by words such as "as," "after," and "because.'.

With knowledge of the relation between a concept just seen and the one currently

being formed, the script applier can give the analyzer the named requests for

predicted events.

As an example of this communication consider the simple story:

(14) As David left the restaurant, he left a tip.

The second use of "left" must be disambiguated by context, i.e., by the restau-

rant script. The aendix contains an annotated protocol of DSAM4 performing this

operation. Here we sketch the main features of the understanding process.

When APE has completed analyzing the first clause of (14), it places its

result where the miemory modules (PP-Hemory and the script applier) can see it.

The script applier finds a match for this in the "leaving scene" of the restau-

rant script. At this point, since "as" indicates that the next concept to be

produced will be in the causal/temporal vicinity of "leaving," the script ap-

plier can form some fairly specific predictions. It expects, among other things,

that the customer will give a tip to the waiter. This expectation embodies a

rule which people have about restaurants. The script applier thus sends a named

request for the tipping event (and others as well) to APE, which looks it up and
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activates it. The request has two purposes. First, if thie predicted concept is

found in the input,, APE can tell the script applier that its %expectation has

been substantiated, thus eliminating the need for memory search. Secondly, if*

APE has a conceptualization which is ambiguous, but one reading is expected by

context, i.e., by the named request, that one will be asserted as the proper

reading.
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IV. Sane Conclusions

We have approaChed the word meaning selection problem from a semantic point

of view. This process is proposed as one which unifies th problems of word-

sense disambiguation, definite noun-phrase (including proncininal.) reference, and

discourse ellipsis, phenomena which are normally considered separately. W.e

identified surface semantics, general world knowledge and episodic or discourse

context as three sources of expectations which aid in this process. we then

described a computer algorithm, the cooperative word-Meaning selector, capable

of using all three. The algorithm is part of a working conceptual analyzer, APE,

which is in turn part of two different computer "understanding" systems.

Although these systems are typical toy artificial intelligence programs, they

work well enough for us to believe that "real" text-processing systems capable

of flexible and reasonably deep (though not real-time) comprehension could be

designed using them as nodels.

our approach does have several limitations. We have purposely ignored any

notion of favored meanings or probabilities. With sane difficulty, for example,

we could compute that the word "ring" refers to a piece of jewelery 85% of the

time. When all else failed, we could use this sense. This would work well (85%

of the time, in fact), but we don't believe it has a place in a cognitive

theory.

we have also ignored syntactic phenomena, feeling that "conceptual" factors

are more fundamental. Many words have multiple parts of speech (i.e., the

senses belong to different parts of speech). Syntactic knowledge would help to

eliminate senses which belong to a certain part of speech. For example, in:

Hearing aids the blind.
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a syntactic analysis would favor the verb sense of "aid," which would help in

the conceptual analysis of this sentence.

Just as the control structure of ELI limited its power, the use of requests

in APE creates some problems. First of all, requests tend to make word defini-

tions long and awkward. Secondly, requests either fire or they don't. This lim-

its the ability of the rules to use surface semantics. The tests of requests

which fill slots tend to look for only very general semantic categories to ac-

count for all possible cases. This limits the power of selectional restrictions

when it is necessary to choose among components of a VEL which are similar. A

notion of minimal requirEments and more specific optional restrictions which in-

crease the certainty of the selection would be useful.

A type of ambiguity we have not considered is caused by modifiers. For ex-

ample, in "small car salesman," "small" could refer to the car or the salesman.

The problem here for the analyzer is not in disambiguating a VEL, which the

current process should be able to do, but in creating one in the first place.

This is because the request associated with "small" that looks for a concept to

modify is satisfied when it finds one. A more general approach would be to look

for all such concepts, and create a VEL if there is more than one.

Finally, the use of named requests to make high-level predictions available

to the analyzer is unwieldy and difficult to generalize beyond simple 6criptal

or planning contexts. What is really needed is a separate "expectation expert,"

which would match expectation patterns from whatever source against the stream

of concepts flcaqing in from the outside world, or circulating internally. how

such an expert would be designed is only very dimly understood at present.

Nevertheless, in spite of these shortcomings, we believe that the coopera-
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tive word-meaning selector is a viable approach to a key problem in applying

knowledge to understand natural language. Therefore, it provides a first-pass

model of one type of processing the machine intelligences of the future will

have to perform.

Implementation Note

The implementations of DSAI4 and ACE discussed in this paper run on a

PDP-11/60 minicomputer under the UNIX operating system [Ritc74]. Both under-

standers are configured as a set of up to seven 65 kilobyte processes programed

in aryland VLISP [Kirb77]. Process creation and message passing are implemented

using the UNIX "fork" and "pipe" system facilities. To give a feeling for run-

time, processing of Story 14 under DSA.I requires about 6 minutes of elapsed

time, with DSAM using the computer in single-user mode.
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Notes

(1) We are ignoring metaphorical uses of "kick" such as "John kicked himself for

his stupidity," and "John kicked his habit."

(2) The arguments for predictive understanding, and for conceptual analysis in

general, are covered in detail in [Ries75, Ries78, and Scha78].
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a APPENDIX
Annotated Computer Run: Context and Disambiguation

DSAM ...v1.0
TIN: file rest2 text:
((as david left the restaurant comma he left a tip pr))

:c-list= (apcO apc4 apc8 apcl2 apcl4 apcl8)
available= (apcO)

;the state of the world after the words "As david left"
;have been processed is dispalyed
;those concepts on the available list accumulate

* (xpn apcO):
(*conrel* type (*when*)

cona (*vel* vl (*act* actor (*pp* type (fperson)
persname (david)
gender (*masc*))

type (*atrans*))
v2 (*act* object (*pp* type (#person)

persname (david)
gender (*masc*))

actor (*pp* type (fperson)
persname (david)
gender (*masc*))

type (*ptrans*)
from (*inside* part (nil)))

v3 (*act* actor (*pp* type (*person)
persname (david)
gender (*masc*))

type (*mtrans*)))
conb (nil))

;the CD representation for "as david left"
;"as" indicates a temporal relation between two concepts
;three senses of left are considered,

1. atrans- left a dollar
2. ptrans- left the resturant
3. mtrans- left a note

;note that meanings 1 and 3 are inferred (i.e. "david
;left a dollar" = david ptrans david from dollar. The usual
;intention of a ptrans from a dollar is an atrans.)

:c-list= (apcO apc4 apc8 apcl2 apcl4 apcl8 apc20 apc2l)
available= (apc2l apcO)

;the state of the parser after the "the restaurant" is seen.
;apc2l is the conceptualization for "a restaurant"

apr8 being considered
;apr8 is a request activated by "leave" looking for a location
;as the conceptual object of the ptrans created by "leave"

VEL assert old: apc8 new: apcl4
;the vel is disambiguated by surface semantics
;the ptrans sense of "leave" requires a location to leave from
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;apc8 is the vel treated by "leave" apcl4 is the ptrans sense

* (xpn apcl4):
(*act* object (*pp* type (#person)

persname (david)
gender (*masc*))

actor (*pp* type (#person)
persname (david)
gender (*masc*))

type (*ptrans*)
fran (*inside* part (*pp* ref (*def*)

type (#struc)
stype (*restaurant*))))

;the CD representation for "david left the restaurant"

aprll being considered
APE: shipping: apcl4

;aprll notices that apcl4 (david left the restaurant)
;is a completed concept and ships it

the current word is Ihe
inr6 being considered
APE seeking referent apc25

;ape needs a vel of all possible "he's"
ape : requesting

(find-ref apc25)

PPMEM: apc25 could be (pphumO)
;PPMEM finds referent, a vel is not formed
;since there is only one possible referent

• (xpn apc29):
(*pp* pptok ppb.Lv0

type (#person)
persname (david)
gender (*masc*))

;the CD representation of "he" i.e. "david"

APPLY: trying f13
;apply is trying to activate a script
;f13 is a scene from the $fly script

APPLY: trying f12

APPLY: backbone match on f12 with bindings
((&passgrp . apc4) (&plane . apc4))

;f12 is close- it is a "plane ptrans passagers"
;if the actor of the ptrans is a plane
;and the object could be passengers
;the fly script would be valid

APPLY: need bindings:
((&passgrp . apc4) (&plane . apc4))

PPMEM: requesting
(setoutf ppmem ((&passgrp . phu0) (&plane)))

;PPI.EM says apc4 (whose permanant token is pphumO)
;could be the passenger group
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* ;but apc4 cannot be the plane

APPLY: invalid binding: (&plane . apc4)
;apply realizes its error

;meanwhile, back in APE...
the current word is Itip
inr9 has fired

;the vel for "tip" is created
:c-list= (apc0 apc4 apc8 apcl2 apcl4 apc18 apc20 apc21 apc29
apc30 apc34 apc36 apc40 apc42 apc43 apc46 apc48)

available= (apc43 apc42 apco)
;apc43 is the vel for "tip"
;apc42 is the vel for "leave"
;apco is the concept "Something occured when david

exit from the restaurant"

* (xpn apc43)
(*vel* ref (*indef*)

v1 (*pp* type (#money))
v2 (*info* type (nil)))
;This is the CD representation for "tip"
;Hawever, the money sense of tip also has a request associated
;with it. A tip is not just money, it is money given to someone
;whose occupation is a type of service (*service*).
;The request (aprl7) looks for an atrans whose object is the
;money sense of "tip". If its TO slot is not filled
;(e.g., "John gave the barber a tip.") then it is filled with a
;person whose occupation type is *service*.

APPLY: searching for apcl4 in $restaurant
APPLY: trying rsO
APPLY: trying rs4

;the leaving the restaurant event
APPLY: backbone match on rs4 with bindings
((&rest . apcl4) (&cust . apc4))

APPLY: need bindings:
((&cust . apc4))

ppmem : requesting
(setoutf ppmem ((&cust . pphunO)))

;ppmem says that david could be the customer
;it has been established that pptokO (apcl4) "the restaurant"
;is the restaurant

APPLY: instantiated event rs4
APPLY: context active: $restaurant

;rs4 has been established
APPLY: hi-level predictions: (exp-tip)

;at the time of leaving, a tip is expected

APPLY: new role bindings:
((&cust . pphumO) (&rest . pptokO))
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;meanwhile, back in APE
aprl3 being considered
VEL assert old: apc43 new: apc48

;the info sense of tip is found by the mtrans sense of leave

* apc43: (*vel* ref apc42 vl apc46 v2 apc48)
* (xpn apc48): (*info* ref (*indef*) type (nil))

;the VEL and its info sense

VEL assert old: apc30 new: apc40
;the mtrans is asserted

aprl3 has fired
aprl4 being considered

;the ptrans sense doesn't find its object

apr15 being considered
;the atrans find its object

VEL assert old: apc43 new: apc46
;the money sense of tip is asserted.

VEL assert old: apc30 new: apc34
;the atrans sense of leave is asserted

apr15 has fired
* lexps!: (exp-tip)

;exp-tip is a nan-ed request, sent to the parser fran APPLY
;ape retrieves this request, activates it (apr18)
;and considers it just like other requests
;the test looks for an event which could be the tip
;and the action puts a confirmation marker on concept
;which is used by the script applier so it does not have
;to search all the scenes for this event.

VEL assert old: apc30 new: apc5l
;a conflict results because of the two asserts associated
;with leave. The conflict resolution scheme results in
;a new vel (apc5l) with an atrans and a mtrans component.
;note that "tip's" disambiguation is not complete
;however, its disambiguation is now dependent on
;the disambiguation of "leave"

* (xpn apc5l):
(*vel* vO (*act* mobject (*info* ref (*indef*)

type (nil))
actor (*pp* pptok pphumO

type (#person)
persname (david)
gender (*masc*))

type (*mtrans*))
vO (*act* object (*pp* ref (*indef*)
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type (#money))
actor (*pp* pptok pphumO

type (#person)
persname (david)
gender (*masc*))

type (*atrans*)))

;the vel for "leave a tip"

aprl7 being considered
;aprl7 fills the to slot with a person whose occ is (*service*)

aprl7 has fired
:c-list= (apco apc4 apc8 apcl2 apcl4 apcl8 apc20 apc2l apc29
apc30 apc34 apc36 apc4O apc42 apc43 apc46 apc48 apc5O apc5l)

available= (apc5O apcO)

*(xpn apc34):
(*act* to (*pp* type (#person)

occ (*service*))
object (*pp* ref (*indef*)

type (*money))
actor (*pp* pptok pphumO

type (#person)
persnre (david)
gender (*masc*))

type (*atra.-s*))
;the atrans sense of tip now has a to slot
;filled by the dictionary definition of "tip"

aprl8 being considered
;naned request: exp-tip

VEL assert old: apc5l new: apc34
;one effect of this request disambigutes apc5l
;in an ambiguous situation, the more expected reading is preferred

apr18 has fired
:c-list= (apcO apc4 apc8 apcl2 apcl4 apcl8 apc20 apc2l apc29
apc30 apc34 apc36 apc40 apc42 apc43 apc46 apc48 apc50 apc5l)

available= (apcO)

APE: sentence concept: apcO

* (xpn apcO):
(*conrel* type (*when*)

cona (*act* object (*pp* type (#person)
persname (david)
gender (*masc*))

actor (*pp* type (#person)
persname (david)
gender (*masc*))

type (*ptrans*)
from (*inside* part (*pp* ref (*def*)

type (#struc)
stype (*restaurant*))))
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conb (*act* to (*pp* type (#person)
0cc (*svjj.*))

object (*pp* ref (*jrdef*)
type (IMoney))

actor (*pp* pptok pphumO
type (#person)
persnane (david)
gender (*masc*))

type (*atrans*)))
;the Lfinal conceptualization
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